SOME-RESEARCH IN THE AREA OF THE DETERMINATION
OF NONSTEADY HEAT FLUXES

G. A. Surkov, F. B. Yurevich, UDC 536.2.083
and S. D. Skakun

A method is proposed for the determination of intense heat fluxes on the basis of the
solution of nonlinear equations of heat conduction with various boundary conditions.

Many technological problems presently require the determination of the analytical solution to nonlinear
equations of heat conduction, permitting a deeper analysis of the thermal processes in the objects under con-
sideration. From these solutions one can obtain suitable expressions for the determination of the heat fluxes
delivered to the surfaces being beated.

This is the very question discussed in the present paper.

We note that in connection with the development of computational technology there are now no problems
in obtaining a numerical solution for nonlinear equations of heat conduction. But the existing methods for the
analytical solution of these equations are still distinguished by a certain complexity and awkwardness, by
various degrees of approximation to the exact solution, and by a large amount of working time expended in
computation. Therefore, the search for an analytically simple solution to the nonlinear equation of heat con~
duction is an urgent task and has considerable importance in the study of problems of heat exchange.

Let us consider an infinite copper plate with a thickness R = 50-10~% m at an initial temperature:
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act on the plane x = 0 of the plate at a time 7 > 0. In (2) it is assumed that A, = 390 W/m-deg and x; = —0.0617
W/m-deg?, while q, = 3-10" W/m? and 6 = 81.54 1/sec are determined from the condition that the function f (1)
describe the experimental curve of [1], that being the most characteristic for the heating of copper heat-flux
pickups by a high-temperature stream. Let the temperature of the opposite wall x =R of the plate remain
constant during the entire heating process and consequently equal to
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From the solution of the nonlinear heat-conduction equation
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with the boundary conditions (1)-(3) we determine the temperature field of the plate as a function of time and
of the spatial coordinate x, and then we compare it with the numerical solution of the same problem. For this
we represent Eq. (4), in which we also take the values p, = 8900 kg/m?®, C, =387 J/kg-deg, and C; = 0.087
J/kg-deg? for copper, in the form :
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wheré @ (x, 1) =t(x, 1) — t;, while ¢ = >\0/poc0 is the thermal diffusivity corresponding to the initial temper-
ature t,. Since the functions
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are continuous in the interval 0< ® < @y, they satisfy the Dirichlet conditions [2], and consequently they can

be represented in the form of the following Fourier series:
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With allowance for (8) and (9) the system of equations (1)~(3) and (5) can be represented as
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or, after the formal application of the reduction rule [3], in the form
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e is the base of the natural logarithms, and
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The solution of the system of equations (16)~(19) presents no difficulties. Thus, after the application of a
Laplace transform with a subsequent transition to the inverse transform and summation over k, the solution
has the form
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while py, are the roots of the characteristic equation cosuy, =0.

Since the maximum temperature did not exceed 483.28°C in the numerical solution of the system of equa-
tions (1)~(4), in the determination of the temperature field from Eq. (22) the values of ak can be taken from
Table 1 with @7 =600°C. Moreover, it follows from the table presented that o, differs from all the subsequent
ak by an insignificant amount. Consequently, it seems possible to simplify the solution (22) still more if out
of all the o) with @y =600°C one takes their mean value o, =0.91357, Then in the new solution (22) the ex-
pression (23) obtains the form
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In Table 2 we present a comparison of the temperatures for this very solution (top row) and for the
numerical solution at different points of the plate as a function of time. As follows from the table, the abso~
lute difference between themis small, and in this sense the solution (22) and the numerical solution can be
considered as identical to a certain extent,

The proposed method of solving nonlinear equations of heat conduction allows one to obtain convenient
equations for the determination of the heat fluxes reaching the surfaces being heated. Thus, by solving the
heat-conduction equation (5) by the method presented, with boundary conditions of the form

®[T=0 = 07 (25)
Or=r, = 9, (1), (26)
Bli=r, = P, (1), 27

after some elementary transformations we find that
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TABLE 1, Values of the Coefficients ak

i
k
200 l 400 l 600 ‘ 800 1000

1 0,97754 0,95563 0,93434 0,91348 | 0,89324
2 0,96255 0,92660 0,89236 085044 | 082785
3 0,96422 0,92986 0,89694 086532 | 083483
4 0,96255- 0,92669 0,89236 0,85039 | 082785
5 0,96317 0.92779 0,89394 0.86155 | 0.83032
6 0,96255 0,92669 0.89236 0,85939 | 0.82785
7 0,96282 |  0,9272 0,89314 086040 | 082910
8 0,96255 0,92669 0,89236 0,85939 | 0.82785
9 0,96273 0,9270) 0,89989 0.86006 | 082862
10 0,96255 0,92669 0,89236 0,85939 | 0.82785
1 0,96268 0,92692 0,89271 0,85990 | 0.82834
12 0,96255 0.92669 0,89236 0,85939 | 082785
13 0,96259 0,92688 0,89262 085073 | 0.82822
14 0,96255 0,92669 0.89236 0.85930 | 082785
15 0.96259 092678 0.80253 0,85969 | 082814
16 0,96255 0.92669 0.89236 0.85039 | 0.82785
17 0,96259 0,92678 0.80245 0.85061 | 082805
18 0,96255 0,92669 0,89236 0,85939 | 0,82785
19 0,96259 0.92678 0.89244 0.85059 | 0.82804
20 0,96255 |  0,92660 0,89236 0,85939 | 0.82785

TABLE 2. Dependence of Temperature Field of Plate on Spatial and
Time Coordinates

X, mm

T 0 | 1 | 2 3 | 5 | 30
0,045 107,81 60,11 31,24 15,08 2,78 0
112,27 64,25 34,58 17,45 3,61 0

0,065 156,15 98,16 58,72 33,36 9,15 0
161,98 103,77 63,69 37,37 11,15 0

0,085 198,64 134,34 87,43 54,68 18,88 0
205,39 140,94 93,58 60,04 22,16 0

0,105 235,98 167,72 115,54 77,07 30,99 0
243,31 174,97 122,51 83,44 35,45 0

0,125 269,16 198,32 142,36 99,46 44 .61 0
276,84 205,96 149,86 106,55 50,07 0

0,145 299,08 226,48 167,71 121,34 59,08 0
306,93 234,32 175,54 128,93 65,35 0

0,165 326,42 252,55 191,63 142,51 73,97 0
334,31 260,47 199,63 150,40 80,88 0

0,185 351,72 276,88 214,27 162,88 89,01 0
359,55 284,77 222,30 170,95 96,40 0

0,205 375,37 299,76 235,75 182,49 104,02 0
383,07 307,53 243,74 190,62 111,76 0

0,225 397,67 321,41 256,23 201,37 118,90 0
: 405,16 328,99 264,09 209,47 126,88 0

0,245 418,85 342,02 275,83 219,58 133,59 0
426,07 349,35 283,49 227,57 141,70 0

0,265 439,06 361,73 294,65 237,18 148,06 0
445,97 368,76 302,06 244,99 156,22 0

0,285 458,45 380,66 312,78 254,22 162,28 0
465,00 387,35 319,89 261,81 170,43 0

0,305 477,12 398,90 330,30 270,76 176,27 0
483,28 405,21 337,07 278,08 184,34 0
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B =R,/2, g, = 0.93434, and ay) = 0.89280 is the arithmetic mean of all @y but the first. In the given case the
data needed for the functions ¢,(r) and ¢,(r) can be taken from the solution (22). In practical investigations
they must be taken from the experiment at the points where the temperature sensors are mounted.
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Fig. 1. Results of reconstruction of the heat flux [1: origi-
nal dependence (2)]: for a) 2, 3, 4, and 5 from Eq. (28) with
R, =1 mmand R, =5 mm; 2and 5, 1 and 3, and 3 and 5 mm,
respectively; for b) 2, 3, 4, and 5 from Eq. (30) at a dis-
tance R =1, 2, 3, and 5 mm from heating surface. q, kW /em?;
T, sec. '

7/..

The values of the heat fluxes obtained from Eq. (28) as a function of the location of the thermocouples
are presented in Fig. 1a, from which it follows that these data are sufficiently close to the values of Eq. (2).
This confirms the fact that the proposed method of solving nonlinear equations of heat conduction assures a
high degree of accuracy.

In a number of practical cases it seems sufficient to mount only one rather than two thermocouples in
the heat-flux pickups. Such a situation can arise when a body is heated over some time interval to an insignif-
icant depth in comparison with its length. In this case the body can be taken as semiinfinite and the condi-~
tion at infinity should be taken as the second boundary condition, i.e.,

Olime = 0. 29)

Then, solving Eq. (5) with the boundary conditions (1)}, (26), and (29) by a method analogous to that of the pre-
ceding problem, after some simplifications we obtain an equation of the following form for the determination
of the heat fluxes:
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The results of the reconstruction of the heat fluxes of (2) obtained from Eq. (30) are presented in Fig. 1b,
as a function of the time and the position of the temperature sensor. It follows from the figure that placing the
temperature sensor farther from the surface of the heat-flux pickup being heated leads to-greater errors. This
obviously follows from the violation of the approximation of the temperature field at a point close to the surface.

Thus, the most reliable results of q can be obtained in the case when the temperature measurement is
made in the immediate vicinity of the heating surface.
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SPLINE IDENTIFICATION OF HEAT FLUXES

E. N. But UDC 536.629.7

A method is discussed for the determination of one-dimensional transient heat fluxes from the
experimentally measured temperature using a spline approximation of the heat flux with sub-
sequent application of the procedures of parametric identification.

A thermal experiment can be treated as a certain measuring system with an unknown input, subject to
determination, and an output which is measured with noise. A one-dimensional body of finite length with known
thermophysical characteristics, dependent on the temperature in the general case, with a thermally insulated
lateral surface and with the temperature of the end being measured, serves asthe physical model of a mea-
suring system for the determination of a one-dimensional heat flux. Serving as the mathematical model for
the measuring system is a system of equations consisting of a differential—difference system of equations, ap-
proximating the one dimensional Fourier heat-conduction equation by spatial quantization at n points, and the
observation equation:

T=AT L BQ, 1)
Y=HT 4+ W,

where

T=IT,T, ... T 0 .
Q=[q10 ...0q2]t9 B: 0 0
H=po...oo, | -

L 0 (cp)ph

Khar'kov Aviation Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 33, No. 6, pp.1085-
1089, December, 1977. Original article submitted April 5, 1977.

1480 0022-0841/77/3306-1480807.50 ©1978 Plenum Publishing Corporation



